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Abstract

-

.-

X . In this paper we discus%‘the regularity of the eigenfunctions of eigen-
¢ value problems with piecewise analytic data and the approximation of the

eigenvalues and eigenfunctions of such problems. A detailed and systematic

£

-
-

numerical study of these approximations is presented, together with an

analysis of the numerical results in light of the theoretical results. The

4 specific aim is to assess the reliability of the theoretical results — which
T are of an asymptotic nature - as a guide to practical computations - which
b may take place in the preasymptotic phase — and to look for characteristic
: features of the numerical results which are not completely explained by known
o
n theoretical results.
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Regularity and Numerical Solution of Eigenvalue Problems

with Piecewise Analytic Data

1. Introduction

The purpose of this paper is to discuss the regularity of the eigenfunc-
tions of eigenvalue problems with piecewise analytic data and the approxima-
tion of the eigenpairé of such eigenvalue problems by the finite element
method, and to present the results of a detailed and systematic numerical
study of these approximations.

[1] contains an analysis of the regularity properties of the solutions of
elliptic boundary value problems with piecewise analytic data. Specifically,
it is shown that the solution of such a problem belongs to a countably normed

B

finite element method has an exponential rate of convergence. (For a survey

space BZ(Q). In [2]) this fact is used to show that the h-p version of the

of the basic results on the h-p version of the finite element method and for
relevant references we refer to [3] and [4].) In this paper we make a
parallel study of the regularity and approximability of the eigenfunctions of
eigenvalue problems with piecewise analytic data. We then discuss the impli-
cations of this approximability for the approximation of eigenvalues and
eigenfunctions by the finite element method.

Section 2 contains background information, Section 3 describes the eigen-
value problems we treat, Section 4 presents a regularity result for eigenfunc-
tions in terms of countably normed spaces, Section 5 surveys (abstract)
results on eigenvalue and eigenfunction approximation by finite element
methods, and Section 6 reports the results of a detailed and systematic
numerical study of eigenvalue approximation by finite element methods and

presents the conclusions of this study.
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2. Notation and Preliminaries

Let Q¢ RZ be a simply connected, bounded domain with boundary I = 3Q,

M
and assume that = U Fi’ where Fi’ for i =1,...,M, 1is an analytic
i=1
simple arc connecting the vertices Ai—l and Ai (AO = AM). Fi will denote

I, -{A,_;.A}. The interior angle at A; will be denoted by w,. This

notational scheme is shown in Figure 2.1.

Az

Am A

Figure 2.1. Notational Scheme for Q and T = 3Q.

We will assume O < w, < 2m. w, = 2n corresponds to a slit in Q. If w, < ),
2n for all i, we will call Q a Lipschitz domain (T will be a Lipschitz
curve in this case). If the arcs Fi are straight lines, we say Q is a

straight polygon or simply a polygon; otherwise we will refer to  as a

curvilinear polygon. We let

%= UF,
1eD 1
‘~:‘
where D is a subset of {1,...,M}, and let o
Y
o~
2 ﬁ?
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Then

‘r = ro V) Fl.

FO will be referred to as the Dirichlet boundary and rl as the Neumann

boundary. We will often consider the special domains
S = S(w,8) = {{r,8) : 0 <r <8, 0<8B < w,

where (r,8) denotes the polar coordinates of x. In connection with S we

introduce the notation

Fl(w,a) {(r,68) : 0<r <3, 8=0},

Fz(w,a) {(r,8) : 0<r<s, 6 =uw.

By Hm(Q), for m 2 0 an integer, we denote the standard Sobolev space

PO E )

of functions u for which

(2.1) ||u||2m - Z IIDauIIi @ <
H (Q) 2
Ja| €m
o a'“'
where Du= — ——, with a = (a,,a,), a,,x, 2 0 integers, and |al =
. % 1%’ *p %
8x1 6X2
a, +a.. We note that Jui = flul] . Let
1 2 HO(Q) LZ(Q)

Hé(Q) ={u: ue Hl(Q), u=0 on FO};

« 2 1/2
or [ ZE: 1Dl ] .
Hl(Q) LD(Q)

ol =1 -

on Hé(Q) we can use either fiul

Let

r.(x) = dist(x,A,) = [x-A.],
J J J

ri(x) = min(1,r,(x)),
J J




k = an integer,

and define

(r (x))P1*k,
1 1

(x) =

i

¢B+k

U=

B m, ¢

If Q=9S, welet & =r". By H (Q), with m and ¢ integers satis-

B B

fying 0 £ £ < m, we denote the weighted Sobolev space characterized by the

norm
IIUII Z Z B*k P u.l , if
5 k=l |o]=k H (Q)
(2.2) full m 2 =
HB' (Q) m
a 2 _
> D g0 R
(k=0 lai=k
0,0 .
HB () will also be denoted by LB(Q).
We will also use the countably normed spaces
BeQ) = (u: ue Hr @, 1oy, 0%l < cd k-0,
H (Q)
(2.3) for Jal =k, k=2¢¢+1,..., where C 21 and
d 2 1 are independent of k}
and
2 _ . , 2 a L -1
€50 = {u s u e 1@, 10%001 £ Cak (a0 ()T
(2.4) for lal =k, k =1,2,..., where C 21 and

d 2 1 are independent of k}.

In the case when @ = S(w,d3) we let

T € 4 X

& W %

-
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% lal
:. :Dau = aT_.L = u o oo’
= ar*1ge® %1972
9 . W s . .
\ and then define the spaces 3 (S), with 0<¢€&<m and O < 8 < 1, which s
» {
™, g
j- are characterized by the norm
2
" (
Y m
% i, ey TR AR P
- (s) k=0 |al=k H™(S)
{25) I]Ui} ) = <
7 B’ (Q) m
+B.0 2
> e E B k=0 (
k=0 lal=k H (S)
Rg'O(S) will also be denoted by ZB(S). Note that LB(S) = ZB(S). Further-
more, we let Hl(S) be the space characterized by the norm )
2 2 o-1la 2
B YD D L .
X (S) H™(S) “ H™(S) !
ol =1
Note that this is just ||u]|21 expressed in polar coordinates. .

H™ (S) ‘

We now state some lemmas we will use in the sequel.

Lemma 2.1. The spaces HJ‘J(S) and HJ’J(S) are equal for j =0,1,2,

B B
i.e., the norms Jul] . . and (lul] . . are equivalent for Jj =0,1,2. N
Jr Jd J»J N
RB (s) HB (s)

This result is obvious if j = 0,1. For a proof in the case j

1]
[zN]

see N

Lemma 1.1 of [1].

Lemma 2.2. Suppose 0 £ 2 <2 and k 2 ¢ Then

k-¢
(2.8) e _ oLull < Cd (k-8)! for any «
Btk eD HO(S)
with lal = k

if and only if




TN TN T T NN TR TR e e R R T

< 3 Yk -0)r for all o

with € < |a’‘]l = k’ £ k.

For the proof of this result see Theorem 1.1 of [1 ].
Lemma 2.3. Let u e HI(S(w,é)) satisfy
(2.8) -Au = f on S(w,d8)

and suppose

(a)
(2.8a) u=0 on rl v F2,
(b)
u=0 on fl
(2.8b) 54 .
3n =0 on F2.
or
(c)
(2.8¢) u g . ouf
. oC a—n = on 1 2
Then
(2.9) < c[ufn + lul ]
1 2(s(w, 8/2)) £5(S(w, 8)) 1 1 (s(w, 8)-S(w, 5/2))

B B

for any B satisfying 0 < 8 < 1 and, in addition, 1-n/w < 3 1in cases
(a) and (¢) and 1-n/2w < B 1in case (b).

For the proof of (2.9), see the proof of Theorem 2.1, specifically the

proof of inequality (2.44), in [1].
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3. The Eigenvalue Problem

Let Q be a straight or curved polygon, and consider the selfadjoint

eigenvalue problem

(Lu)(x) = A(Mu)(x), x = (xl,xz) € Q
(3.1)
(Bu){(x) =0, xe€T,
where
2
_ a du
(3.2) (Lu)(x) = Z a—x—.-[ai\j(x) aT(X)] +c(x)u,
i,g=1 Y !

with a, (x) = aji(X) and c(x) 2 0 analytic functions on Q satisfying

1J

2 .2 .
(3.3) zz:aij(x)sigj 2 71(€1+Ez) VxeQ and V (EI.EZ). with 7, o,
1,J

where

(3.4) (Mu) (x) = d(x)u(x),

with d(x) an analytic function on Q satisfying

(3.5) d(x) 2 7, > 0,
and where
u(x), x € ro
(3.6) (Bu)(x) =
du _ du 1
5;(X) = :E:aijnj E;I(X)' x e I'",
i,
with n = n(x) = (nl,nz) denoting the exterior unit normal tc I at x.
we define the bilinear forms
(3.7) a(u,v) = zg:a..(x)gg— czx—*-cuv dx
ij ax.1 ax |
Qi,j J
8
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and

(3.8) b(u,v) = J duvdx
Q

on Hé(Q), then (3.1) has the weak, or variational, formulation

Seek A e R, 0#uce Hl(n) satisfying
0]
(3.9) 1
a(u,v) = Ab(u,v) ¥V v € HO(Q).

(3.8) has eigenvalues

O<A, $A. 5 ... /4w

and corresponding eigenfunctions
ul,uz,...
satisfying

a(ui,uj) = 613'

In Section 4 we prove the following theorem on the regularity of the

eigenfunctions of (3.9).

P SR Y

Theorem 3.1. Suppose f 1is a straight or Lipschitz curved polygon (as

described in Section 2). Then for each j = 1,2,...,

uj e 3{23(9),

where B = (Bl,...,BM), with Bi satisfying

0 < B? < Bi <1,

where B? depends on the values amn(Ai) and the angle wi.

Remark 3.1. We have assumed Q 1is simply connected. Theorem 3.1 can easily

be extended to cover multiply connected domains.

. e At
-----
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- - - - - N . - - - - “w =
I L TR IV P I AL
il W A W O o i A R S S P T o

U ol ¥ ]

P I PO



Remark 3.2. In Theorem 3.1 we have assumed that ai.,c, and d are analytic

on Q. This condition can be weakened to the requirement that these functions

M
are analytic on Q- U Ai’ provided we impose certain growth conditions on
i=1

\ aij,c,d. and their derivatives.
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4. Regularity of the Eigenfunctions

'y
.4 In this section we will prove Theorem 3.1. We provide the complete
* details only for the case when Lu = -Au and Q 1is a straight polygon with
)
% FO =T (so that the boundary conditions are of Dirichlet type). The proof in
L
& the general case will only be outlined since the arguments are similar to
X those used in [1]
e . _ M
-, Lemma 4.1. The eigenfunctions of (3.9) are analytic in Q =Q- U Ai'
N i=1
For the proof of this result see [6, Theorems 5.7.1 and 5.7.1°].
»
y Proof of Theorem 3.1. Assume Q 1is a straight polygon, and suppose, without
v loss of generality, that Ai is located at the origin and Fi+1 lies along
-axis. < < = S
. the x1 axis Choose O 6i 1 so that 56, S(wi'si) c Q and SG‘ n
N -
\ :E: FJ = @. See Figure 4.1.
ol J#i,i+1
5
v
- | —
e .
: i
r. Figure 4.1. The Domain Sj .
i
i Consider an eigenpair (A,u) of (3.9) and suppose [u 1 = 1.
g H ()
. Localizing to the vertex Ai we let
. (4.1) v, = rku k =0,1,2
‘o ) k r,k' vy Ly o
v,
o,
.
rd
. 1 1 3
o N
R A S R T, A s AN AN IR
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Then, using the identity

k k-1, 2 k-2, 2
- = - >
(r qu) r {r Au)rk Ar (r u)rk’ k 2 0,
we have
_ k-1, 2

-Avk = ar (r U)rk in S61
(4.2) - -

vk =0 on Fl v FZ.

By Lemma 4.1, wu is analytic in Q. Thus there exist constants CO and dO

such that

(4.3) vl < c.da%!,

1 0%
"Ss,2)

0,1,...
H (SG

Let us now prove that there are numbers C and d such that

k

(4.4) Hvkﬂ < Cd k!, k

0,1.2.....
EICN
s (Ss, /2

for any 0 < B8 < 1 satisfying 1--1t/wi = B? < B. We will show, in fact,

that (4.4) holds provided C = Cl(CO+A+1), d satisfies

d
0
— 2
a =t
A A
s s 172,
d

and

COCI(K*l)dO 2COC1A COC1A
+ + <

d d d2

IO

where C and C are the constants in (4.3) and (2.3), respectively, and

0 1
0 . . _ _ 1 _ - = ~
Bi < B. First consider k =0. u = vo € H (Séx)' u = v0 0 on Fi v r2,
-Au = Au on S5 (cf. (4.3)), and |lu 1 = 1, so we can apply Lemma 2.3
1
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to obtain

v

CI[RHUHZ (s )+l ol 1

B 48y B (S

C1 max(1, 68)[Anud + |tull 1 ]
H (S ) H (851-551/2)

C,(A+1) |y
1 ul(q)

Cl(A+1), provided 0 < B < 1 satisfies

- O .
1--1r/wi = B < B;

thus (4.4), with k = 0, holds for this choice of C and d.
Suppose (4.4) holds for k ..., 81, where £ 2 1. We will show it
holds for k = ¢ and conclude by induction that it holds for all k. We

begin by noting that ve € H1(86 ). To see this it is sufficient to show that
{

L O -

HVZH < w. We easily see that

H (861/2)

”vequ(g = 101-8v,_, +rlv, Il
8,/2

1

L et O N G SR

: C[”V?’luﬂl(s . r”Hl(s )]
5

Tute¥a’n

<C["Ve-1“H1(S Rl
8,/2 8,/2

+(rtv, ) 1 1
&-1'r'r', 0
H (S61/2)

Y X

-

-1
+0r [rtv, D 11 ]
&-1'r'e 0
H (561/2)

B e L e L e e g e e e e o S S e S N P
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5:: flr( )l
na s C[""H" 1 tirtve el o
% H (S5 ) H (S, )
(v, +ir(v, ) __|
" &~1'rr" 0O
% H(Sg )
d
i

+0Cv, )l

&~1'r" 0O

E H (Sa,/z)

(P

+ (v, ) ]
&-1'ro HO(S )

(]
Lap s

3y/2
From the induction hypothesis,
2 2 2
v, .l = flv, .l + (v, )
-1 , 2 -1" 1 &~1'rr" 2 (S )
3 (551/2) H (861/2) B "38;/2
-1 2
+r “(v,_.)
-1're 23(561/2)
-2 2
+ e v, ol
{-1766 23(561/2)
< .
i <
Since r £1 on 561/2 we see that “vzuﬂl(s ) < Cuvf'1“K2,2(S ) and
8;/2 B 872

hence that Hven 1 < w. Now, since v, € Hl(S6 ) and because of (4.3)
H (S, !
01/2

¢

we can apply Lemma 2.3 to get, for 0 < B < 1 satisfying B? < B,

v,

, 2
Rg (Sél/z)
e ;
< C, Alr” “(rTu) 8”2 s )* ”VZH 1.1 !
r B T8 K.’ (s, -S )

B %8, %5,/2 §
N

< C1 max(l.&?){AHre-Z(rZu) E“ 0 + HVﬁl )
r  H (S, ) X (S, -S ) i
8y 5, 8,/2 :
4
¢
’
¢
P
1
14 -
N R R R R AR AR ARy NS -




- Cl{hllrz_z(rzu) Joo v,
r H (551) X (561_851/2)
Then we note that
(4.6) f2r20) = vpraty, U, .
r
(4.7) 172 P
r H (56 )
)
< ||re—2(r2u) 8” 0 +[|r£_2(r2u) E" 0
r H (SS,-SBI/Z) r H (Sai/z)
(4.8) IIVZII 0 = ||(1—£)v£_1+r(ve_1)rl| 0
H (561/2) H (561/2)
< (&Div,_ . +r(v, ) |
&1 HO(S ) &~1'r HO(S
8,/2 5,/2
s v, .,
% s, )
5,/2
< v, .
U025 )
B '78,/2
Now, using (4.3), (4.8), (4.7), (4.8), and the induction hypothesis, we obtain
-2, 2
lr” "(r~u) ell 0
r H (SS,)
< llre—z(rzu) l” 0 + Ilr'e_z(r‘zu) 8” 0
r H (56,-56,/2) r H (861/2)
< vl +28 v,
£ 0 -1". 0
H (551—561/2) H (56,-86,/2)
s 8- v,
2 40(sg -8, o)
i !
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P

Pl R R Rk s

NS

+ “Ve“HO(S ) +28”Ve—1"Ho(S )
HEDIV o
8,/2
532”"8-1”}{2.2(5 )+£(£-1)||ve_2"}(2’2(s )
B a2 B %872
+ vl +28v, .
e e-1" 1
k4 (SSI—SS,/Z) k¢ (56,-551/2)
+(&-1) v, I
2" .1
X (Sa,_sa,/z)
SZ![C(3d8_1+d8_2)-rco(dé+2dé'1+dé—2)]'
. e_z 2-2 . .
Note that if & =1, the terms d and dg are not present. Combining

(4.3), (4.5), and (4.9) we get

(4.10) ||v£||}e2 5 < 2!(CC17\(3de-1+d8_2)
o (S5, 2]
e . 8-1 -2 ¢
+C0C17\(d0+2d0 +d0 )+COC1dO]
C.x C.A
= ud"{cfdl +L2]
d
) -1
0 0 1
+c0c1(x+1)[j—] +2c0clx[:_] 3
-2
0 1
)
0-1"|d 42
C.A C.A
< esdz{c[adl +L2]
d
. CoCy (A+1)dg . 2C,C,A . CoCoh
d d e
16
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< Z!de[g+ g]

CE!dQ

thus (4.4), for k = ¢ holds with C and d as selected above. This

completes the proof of(4.4) for all k 2 O.

Next we show that there are constants C and d such that

MMy, g, S CakL,
B'78,/2

(4.11) ir

for all « with

la] = k+2 2 2 and @y < 2,

provided B? < B. We, in fact, show that (4.11) holds with C=3C and d =

~
‘i max(6,d), where C and d are the constants in (4.4}. Let k 2 0. Then
y
', there are three choices for « with J|a|] = k+2 and o, £ 2, namely «a =
L
. (al,az) with @, = k and ®, = 2, « = k+1 and @, = 1, and @, = k+2
# and a, = 0. Thus (4.11) is equivalent to the following three inequalities:
d
(4.12a) 1720 el . ) = g3,
B "8,/2
+’
L4
; (4.12b) l[r‘k—lurk,lellf . )% &3,
g B T8/2
. k ==k .
. (4.12c) I yeall , (s ) < Cdk!, k 2o0. i
. B 61/2 :.
- g
. Recall that (4.4) states that -
: 2 3
: (4.13) v, | = Ir¥u @ siePefu g8 3
e K2 2s. ) als, ) s, ) :
N B 61/2 8i/2 51/2 '-4
o =4
o *d
spef ek o i *
e 0s, )
! 8,72 :
.. '
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: (4.

it follows directly from (4.13).

0 8t e e~ ’
Y M AR R4S

S ARMASR AL S sl S AP DAL AdLAR S SN Cut e Ny g Ay
a1rP 2k o2
r- 6e HO(S )
8,/2
< Cdkk!.
Next, consider (4.12b). For k = O,

12a) follows immediately from (4.13).

0,1,...,k-1.
: 15 e
3 k+1
: r<*‘e 28(861/2)
D)
<
<
<
which shows, by induction, that

Suppose now that (4.12b) holds for

Then, using (4.13), we have

. B+k-2
re " KT urke”Ho(S )
8,72

i B-1, k
ir (r qu)
cd¥kr + ca< Tk

1

ck! (d¥+3857 1)

ock! 35
g

(4.12b) holds for all k. Finally consider

3 (4.12c). For k =0, this follows directly from (4.13). Suppose now that
(4.12c) holds for 0,1,...,k-1. Then, again using (4.13), we have
k B, k
IIru k+2” = Ir"(ru k)
r 2B(Séx/2) r®rr
CokePL k-1 ePR2y
r (s )
8,/2
< cd¥r + 283K Tkt + 234 %k,
‘ - - el —
= Ck! (dk+6dk 1*":idk 2)
< (3C1krd”
= 3%,

which shows that (4. 12c)

X (4.11).

S e N

2o TR A

"-r_".)“.- NN

holds for all k.

This completes the proof of
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Using the identity

which is valid for «

(4.14)

(r-u

) .
90’.2-2 rocl

Note that the number of 6-differentiations on the right side of (4.14) is two

A A

less than on the left. Thus repeated application of (4.14) reduces the number

of #@-differentiations to < 2, so that (4.11) can te applied. In this way

one shows that there exists C and d so that

oy =2.,0

(4.15) iir D u

-
g
&,

»

P

provided BQ < B.

Now u € £B(S6 /2) if and only if u e

HrB+k_ZDau

for some C and d independent of k. (4.4), with k = 0, together with

Lemma 2.1, shows that u € H2'2(S

B 8,72
k 22 be fixed. By Lemma 2.2,

It thus remains to prove (d4.186).
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IeBPrR2p%y . < cd® % (k-2)1, for lal =k
H (S )
8,/2
if and only if
k’—2-a’ o ok =2
(4.17) r 2 ull£ (s ) < Cd (k’=2)¢t,
B °8,/2
for 2 < Ja’| = k' £k
But from (4.15) we have
k’!-2-a’ v
Ir 0% ul, o &3 2k -2)1,
B T8,/2

which implies (4.17). Thus (4.16) holds for some C and d, and we conclude
e 0
that u € BB( 5, /2) for any 0 < 8 < 1 satisfying 1 nw, = Bi < A
. 72 . 0 ) o
In this way we prove that u € 381(551/2) for Bi < Bi in the nelghtar

hood of each vertex Ai' Combining this result with Lemma 4.1 we arrive at

the proof of Theorem 3.1 in the case that L = -4 and Q is a straight

polygon. If L 1is the general operator in (3.2) and Q 1is a straight

polygon, the result is obtained using the techniques in Section 3.2 of 15].
Finally, for the general case in which Q 1is a Lipschitz curved polygon we
employ the arguments used in the proof of Theorem 3.4 of (5] to get the

desired result.

More specifically, by that technique we show that u e 7 .00

Then, using Lemma 2.4,we get Theorem 3.1 in its full generality.

Remark 4.1. A careful analysis of the proof of Theorem 3.1 allows cne !0

assess the dependence on A of the values at the constants C and d (cf.

{4 .16)), which are related to the smoothness of the eigenfunctions. One can

see, for example, that d = dA+k, where d 2 1 and k are independent of

A. This suggests that the higher eigenfunctions are less smooth than the

20
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N
lower ones. Although this is, in general, correct, we shall see in Section 8 2
that there are important exceptions. In the example treated there we will see K

that of the first three eigenfunctions, the first is the roughest while the

third is the smoothest.
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5. Basic Results on Eigenvalue and Eigenfunction Approximation

As we have seen in Section 3, the eigenvalue problems we are considering

have the form

Seek A e€eR, 02 uce Hé(Q) satisfying
(5.1) 1
a(u,v) = Ab(u,v) V v € HO(Q),
where the bilinear forms a and b are defined in (3.7) and (3.8).

We are interested in approximating the eigenpairs (A,u) of (5.1), and

toward this end we select a family of finite dimensional subspaces §(p,k) of

Hé(Q), indexed by the parameters p =1,2,... and k =0,1,..., satisfying
(5.2) inf [la=xl 1 —0 as p—o, uniformly in k,
xeg(p,k) H (@)

for each u € Hé(Q)

(the reason for employing two parameters will be made clear later). Then we

consider the finite dimensional eigenvalue problem

Seek A(p,k) € R, 0 # u(p,k) € §(p.k) satisfying
(5.3)
alu(p,k),v) = A(p,k)blu(p,k),v) V v e S(p,k).

(5.3) has a sequence of eigenvalues
< < ... £
0 Al(p.k) <. AN(p.k)
and corresponding eigenfunctions

ul(p,k),... (p,k)

-UN

satisfying

a(ui(p,k).uj(p.k)) = 613‘

where N = N(p,k)

dim §(p,k). The eigenpairs (Ai(p.k),ui(p,k)) of (5.2)

are viewed as approximations to the eigenpairs (Ai,ui) of (5.1). It is

22
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well-known (see, e.g., [7]) that

(5.4) Ai < Ai(p,k), Y p,k, 1=1,...,N,

and, as a consequence of (5.2) (see, e.g., [7]), that

lim Ai(p,k) = A,, uniformly in k, for each i.
poo !

We now present the error estimates that describe the quality of the
approximation (Ai(p.k),ui(p,k)). For the sake of simplicity, we state these
results in the case in which the eigenvalues Ai of (5.1) are simple. For a
complete treatment of the general case we refer the reader to (7,8,9,10,11].

Let
HUHE = va(u,u)

Hqu = vb(u, u).
Then we let

(5.5) ei(p,k) = inf Hui-xHE.
xeé(p,k)

v(p, k) sup inf  ITf-xlg,
FeH () xe8(p, k)
£ =1

sup inf HTf'XHE.
feL,(Q) 28 (p, k)
1£15=1

where T : LZ(Q)—eHé(Q) is the solution operator corresponding to the

differential operator L introduced in (3.1), i.e., T 1is defined by

-

Al

¢
\
)
'-
)
~
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Tf € Hé(Q)
(5.8)

alTf,v) = b(f,v) V v € Hé(Q).

The error estimates are given in terms of the quantities ci(p,k), vip,kJ),
and wn(p,k). We note that all of these quantities approach zero as p—w,

uniformly in k.
Theorem 5.1. Suppose Ai is simple. Then there is a constant di such that

(Ai(p.k)-hi)/h

(5.9) 1-d. n2(p,k) < o1 vduip k),
i 2 i
ei(p,k)
forall p and Kk,
and
flu, (p,ki=u, | /I,
(5.10) 1< 1 1E 1E 4 +d,v(p, k),

ei(p,k)
forall p and k.

This result shows that for k fixed and p large, the eigenvalue error
(A, (p,k) -A,)/A,
i i i
is nearly equal to
s?(p,k),
i
and the eigenfunction error
- |
Tu, (p. k) =, lle/lug e
is nearly equal to
si(p,kL

One of the goals of this paper is to make a computational study of these error
assessments in the practical range of the parameters p and k.

By the usual duality argument we have

24
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(5.11) Hui-E(p,k)uiHb < Cn(p,k)"ui-E(p,k)uinE,

---,"__
vy

where E(p,k)u 1is the a-orthogonal projection of u, onto §(p,k), showing

P
Y S

that Hui-E(p.k)uiHb = o(Hui-E(p,k)uiHE). A parallel result holds for the

eigenfunction error ui-ui(p,k). We state this in

IT L0

Theorem 5.2. Suppose Ai is simple. Then there is a constant Ci such that

e w
v

h ISR

aLe

(5.12) Hui-ui(p,k)nb < Cin(p,k)nui-ui(p,k)HE.

v ¥ ¥ wow_

This result is proved in [11].
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6. Numerical Results and Their Analysis N
~

In this section we consider a model problem, present numerical results .

for it, and analyze these numerical results in light of the theoretical .
results outlined in Section 5. We will consider the behavior of both the p :

and h-p versions of the finite element method. The specific aim is to
assess the reliability of the theoretical results — which are of an asymptotic
nature — as a guide to practical computations - which may take place in the
pre-asymptotic phase — and to look for characteristic features of the numeri-

cal results which are not completely explained by known theoretical results.

The Model Problem

Let Q be the L-shaped domain shown in Figure 6.1 and consider the
eigenvalue problem

-Au = Ay, x € Q

(6.1) u=0, x el =89
X2
A5 A4
T
X
r
VAALXI
I i
Ag A y o
Id
P d
e
XY :
I AZ A3 \
la i |
f >t > .

Figure 6.1. The Domain Q
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. Q 1is a Lipschitz straight polygon, as described in Section 2, and (6.1) is an
¢
v
: eigenvalue problem of the type described in Section 3. We are taking FO =T.
_ The bilinear forms a and b are given by
e (6.2) a(u,v) = J [g—:— g%+g—l—;— g—;—]dx X
- 1 2 2 2 K
- Q .
and
% (6.3) b(u,v) = J uv dx,
* Q
D Y
. and the norms lIuIIE and llullb are given by
N
172
N du |2 8u ]2
‘ (6.4) = J (e (3]
> Q
n :
N )
» and .
“ 3
.! D)
' 5 172
p (6.5) hall, = u” dx .
> Q .
N
Y 1 .
Thus HuHE is the usual energy norm in HO(Q) and Muub the usual L2-norm. »
: Let L
< < >
O < Al > Az > /m :-
and
U U,

be the eigenvalues and eigenvectors of (6.1) and suppose

t g g v ®

The model problem (6.1) was selected as a typical example of a prohlem cn

(9 a domain with nonsmooth, but piecewise analytic, boundary. It will also be of

‘g e W ¥ _V_
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interest in that it has some symmetries. (6.1) is a reasonable representation Ky
of a large class of engineering problems. N
;;
The Regularity of the Eigenfunctions ::
, On the basis of Theorem 3.1 we can make an asses-ment of the regularity :
L
of the eigenfunctions of (6.1). It is easy to see that the eigenfunctions of ;
]
(6.1) are analytic at the vertices Aj' where w‘j =n/2, j=2,...,6, but “y
that at Al' where wl = %n, the eigenfunctions are singular. From Theorem &:
'*
3.1, more specifically from the results of Section 4, we see that *
]
2 -
(6.6) u, = B (Q), ~
i B »
"
rl
where B = (Bl""’BB) with 0 < BZ""’BS < 1 arbitrary (in fact, we can )
)
n 1 -
RN = -— =z« < 1.
take 32' ’BS 0) and 1 o 3 Bl 1 :.
We can also use the more standard regularity theory for problems in :
h
demains with corners (see, e.g., [12]) to analyze the singularities of the :
)
eigenfunctions. We have, for example, ii
S
.~
_ 2/3 .
(6.7) u, = (Clr sin 2/3 e)w-+v1, ii
> )
where § is C* cut-off function based at the point Al' v, € H™(Q), (r,8) S
are the polar coordinates depicted in Figure 6.1, and C1 # 0. Obviously i
u, € Ha(Q), with a < 142/3, but u, ¢ H5/3(Q). Nevertheless u, € Bg/i(n). g
' ]
(Here H%*(Q) is the fractional Sobolev space and Bg w(Q) is the Besov t
space; see [13]). Not all the eigenfunctions have the form (6.7). In fact, E
P
symmetry considerations show that u2 is antisymmetric with respect to the o
)
N
line x = -y and hence o~
o
f:'
_ 4/3 ., ,
f (6.8) u, = (C2r sin 4/3 e)w-vuz, ’

where v, € H (Q) and C2 # 0, so that wu_ € Ha(Q). for any o < 1+ 4/3,

2
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and u, € 82 © (Q). Furthermore, u, is antisymmetric with respect to both
axes and thus

2,172 1
(6.9) uy = (5) 7 Sin X, sin Xy

U, is therefore analytic on Q.
We see here a typical phenomena for eigenvalue problems arising in
engineering, namely, because of the presence of various symmetries, higher

eigenfunctions may be smoother and hence lead to more accurate numerical

approximations than the lower ones. See also Remark 4.1.

The Finite Element Spaces

We consider the meshes shown in Figure 6.2. These are typical meshes for
the p and h-p versions of the finite element method for the approximation
of (6.1) since the leading singularities of the eigenfunctions are located at

vertex A1 (for more, see (2] and [14]). The meshes are characterized by the

number k of layers.

v & 3 & _K_ 4 1%

A a 8 s -
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By S(p,k) we denote the finite element space consisting in polynomials \
-
of degree p on a mesh with k layers. The functions on the trapezoidal :
elements are defined, as usual, as pull-back polynomials of degree p based P
o
on the standard bilinear map. The elements are of serendipity type Q' (see ﬁ
(15])). The number of degrees of freedom of one (unconstrained) quadrilateral D
element is
.
4p, for p < 4 \
4p + Lg;é%ig:il’ for p 2 4.
By §(p,k) we denote the finite element space constrained by zero on T, X
i.e., $(p,k) = S(p,k) n Hé(ﬂ). The number of degrees of freedom is defined :
to be the dimension of é(p,k) and will be denoted by N(p,k). For large p K
N
and k we obviously have N
5 X
N(p,k) = (k+1l)p .
For small p and k this asymptotic formula is, of course, not very accu- 5
rate. Table 6.1 gives N(p,k) for various combinations of p and k wunder N
consideration. The ratio N(p,k)/(k+1)p2 ranges from .44 to 3.75 over 1
our range of p and k. i
o 1 2 3 4 5 6 7 8
0 0 2 4 9 17 28 42 59
g 1 5 18 31 53 84 124 173 | 231
2 | 10 34 58 a7 151 220 304 403 ’
3 15 50 85 141 218 316 435 575 f
[
: Table 6.1. Number of Degrees of Freedom ;
- A
X ~
: b
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We recall that in the p version, accuracy is achieved by letting p—owo
while k 1is held fixed (i.e., the mesh is held fixed). With the h-p
version, we simultaneously increase p and k. In the classical h wversion,
accuracy is achieved by refining the mesh while keeping p fixed. We will
concentrate on the p and h-p versions. We will not study the h versicn
nor assess the question of how the performance of elements of type Q’
{serendipity type), which we are using, compares with that of the full tensor
product elements (of type Q) or with that of triangular elements. Neverthe-
less, we will consider the effect of distortion of elements for the p and
h-p versions. For k = 0, none of the elements are distorted, while for

k > 0 many elements are trapezoidal, and hence, distorted.

Approximation Properties of the Spaces S$(p,k)

In (5.5) we introduced the quantity

e lp,k) = inf  jlu -zig
x€8(p. x)
clearly
Ci(p.k) = HUi--E(p,k)uillE
i Hui—E(p,k)uillE
hug e
where E(p,k)ui is the a-orthogonal projection of Uy onto §[p,k) {rocal!

that ”ui”E = 1). We have seen in Section 5 that the accuracy of the finite
element approximation of the eigenpairs is determined mainly by ei(p.k). We
now present some theoretical and numerical results on the size of ei(p,k). We
first note that (5.2) holds for our choice of é(p.k). To see this we note
that the C” functions with compact support in Q are dense in Hl‘ Herce

0

condition (5.2) is equivalent to the approximation of smooth functions by the
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o ,
,: p version and the results of {16]) lead to the desired conclusion. )
N
.

' % From the approximation results in [16] and the regularity results (6.7 - y
~
(6.9) we obtain

'n

N -4/3 ;
N {6.10a) cl(p.k) < Cl(k)p , b
N .
= -8/3 :
’ (6.10b) e (p, k) < C (k)p :

2 2

. and )
- -1/¢ )
) (6.10c) ca(p.k) < Ca(k)p , for any € > 0.

A These are estimates for the p-version of the finite element method cn a fixe: X
v,

:- mesh; (6.10a) and (6.10b) are optimal, but (6.10c) is not. In fact, 83(p,k) )
. decreases exponentially in p. The estimates (6.10) (including the refinemen:
fj of (6.10c) Jjust mentioned) can obviously be written in terms of N(p,k). If :
_:‘

N this is done cl(p,k) and cz(p,k) are seen to decrease algebraically and

.~ A
. /
? ca(p.k) exponentially in N(p,k). 4
- If p21 and k 2 0 are related by

| '
ﬁ < < :
¥ al(k+1) <ps a2(k+1), .
5 where 0 < a, < a,, then (see [5] and {14})

' 1.3 :
" - { )
- (6.11) £.(p.k) < On yINCp k)] for some C >0 and 7y > O.

:} y and C, in general, depend on i,al,az,B and the domain, but are indepen-

e

N dent of N. (6.11), which follows from the fact that u, € 32(9) for every 3
a N
- ]

i (cf. (B.68)), is the basic estimate for the h-p version. ‘

- J
‘ Figure 6.3 depicts the relative error cl(p.k) for various k as a h
. : o -4/3 h
‘< function of p in double logarithmic scale. The rate p is shown as o :

slope in the figure (cf. (6.10a)). We see the typical behavior of the ¢

version of the finite element method.
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For the case k = 0O we see that the rate is very quickly in the asymptotic
range p-4/3. For k > 0 we see the typical reverse S-curve.

In the h-p version we simultaneously increase p and k, e.g.,
consider (p,k) = (3,0),(5,1),(7,3),... . We see that for this sequence, for
which N(p,k) = 4,84,435,..., the algebraic range typical for the p version

is absent and the error curve is convex with respect to N (see also Figure

6.7) as follows from (6.11).
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The reverse S-~curve shown in Figure 6.4 characterizes the performance of
the p version. It has two parts, the pre-asymptotic phase where the curve
turns down and essentially gives the behavior of the h-p version and the
asymptotic phase where the curve is a straight line (with slope -4/3 1in cur
case). As Kk increases the asymptotic phase shifts toward higher p (see
Figure 6.3).

To understand this behavior we note that the asymptotic phase begins with
that p at which the error due to the elements with vertices at A1 {where
the leading singularity occurs) starts to dominate the total error. Because
u;, € 32(9), the error decreases exponentially in the pre-asymptotic phase

B

during which it is not dominated by the elements at Al' We further note that
for k low (i.e., for an unrefined mesh) the singularity greatly affects the
error and thus its influence shows up already for low p, whereas for k
high (i.e., for a refined mesh) the singularity has been resolvéd by the mesh,
hence has less effect on the total error, and its influence shows up only for
high p. Roughly speaking, the mesh is not properly refined, for the desired
accuracy, if we are in the asymptotic phase of the p version (and the rate
of convergence is algebraic). For more details see [2].

Figure 6.5 presents the relative error cz(p.k) for various k as a
function of p. Here the slope in the asymptotic phase of the p version is
-8/3 (cf. (6.10b)). For k =0 we are in the asymptotic range for p 2 6,

but for k =2 and 3 the asymptotic phase is not reached for the values of

p we are considering.
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Figure 6.5. The Relative Error cz(p,k).
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Figure 6.3 shows an interesting phenomena occurring in practice, namely,
that in certain circumstances refinement can lead to an increase in the error.
We note that for fixed k, the inclusion $(k,p+1) > $(k,p) is valid and

this leads to a decrease in error with increasing p, while for p fixed we

ARNAY T e g8

h

do not in general have S(k+1,p) > $(k,p) so that the error is not guaranteed

1T WA

to decrease with increasing k. For low p, the major error occurs in the
largest elements and in these elements distortion deteriorates approximability
in Hl(Q). A priori, it is virtually impossible to predict this behavior. In
general, a conservative strategy for mesh refinement is probably advisable.
If one is interested only in very low accuracies, in certain situations an

unrefined mesh with undistorted elements could give better results than a

refined mesh with distorted elements. Comparing Figures 6.3 and 6.5 we see
the interesting feature that for p = 2 the refined mesh gives a better
result for the second eigenfunction, while for the first eigenfunctions the
unrefined mesh gives the better result. Because we usually compute several
eigenvalues with one mesh, we see that the conservative refinement strategy
mentioned above is advisable. (We remark that for triangular meshes the

situation is different since in this case the spaces are nested.)
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Figure 6.6 shows the behavior of 83(p,k). Since U, is analytic, the

PR ALY
R

exponential rate occurs for all p (cf. (6.10c) and the following discus-

sion) and essentially no difference can be seen in cs(p,k) as a function of

PAPdR S

k 2 1. It is thus best to use an unrefined mesh.
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Since for k =0, ug is symmetric in every element of the mesh, the error for
odd p+1 1is the same as that for even p. We note, however, that in

general such symmetries are difficult to predict a priori.

Remark 6.1. The numerical results we present require the values of the exact
eigenfunctions, which are not explicitly known. We obtained values for these

eigenfunctions by a careful extrapolation procedure which we believe leads to

reliable results.

Accuracy of the Approximate Eigenvalues

Consider the finite dimensional eigenvalue problem (5.3), where the

spaces §(p.k) are as described in the Subsection The Finite Element Spaces.

With this choice for §(p,k), (5.3) defines the finite element method for the
approximation of the eigenpairs of (6.1). As in Section 5, denote by
(Ai(p,k),ui(p,k)) the eigenpairs of (5.3). These (Ai(p,k),ui(p,k)) are

called the (finite element) approximate eigenpairs. As noted in Section 5,

A; A (pk), ¥pk, i=1,...Npk) =din $(p, k),
and

lim A, (p,k) = A., uniformly in k, for each 1.
pow i

We are interested here in the accuracy of the approximation Ai(p,k) =

Ai; specifically we are interested in the comparison of ()\.l(p,k)-)«i)/h.1 and

s?(p,k) (cf. (5.9)). Thus we define
(p. k)

(6.12) C,(p.k) =

From Theorem 5.1 and the facts that in our case v(p,k) < O(p—4/3) and

nip, k) < O(p-l), uniformly in k, (cf. [18]), we have

1-0(p"%) < C,(p.k) s 1+0(p'4/3), uniformly in k.
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; Table 6.2 gives the values of Ci(p,k) for various values of p and k. ;
> N,
N o 1 2 3 |
o p 3
2 1 - 1.322 | 1.349 | 1.346 .
'3 2 | o.912 | 0.988 | 0.978 | 0.978 .
- 3 0.967 | 0.947 | 0.932 | 0.932
o N 4 0.962 | 0.945 | 0.929 | 0.927
v 1 5 0.977 | 0.991 | 0.965 | 0.954
. 6 0.984 | 0.995 | 0.973 | 0.962
7 0.992 | 0.998 | 0.997 | 0.992
r 8 0.995 | 0.999 | 0.998 | 0.996 2
¥ "
‘. 1 - 1.795 | 1.777 | 1.777 !
ad
A 2 0.867 | 0.919 | 0.921 | 0.978
- 3 0.787 | 0.892 | 0.893 | 0.932 .
“u
N N 4 | 0.780 | 0.886 | 0.886 | 0.927 g
N 2 5 0.871 | 0.932 | 0.931 | 0.934 f
> 6 0.948 | 0.932 | 0.829 | 0.962
™ 7 0.966 | 0.963 | 0.962 | 0.991 ~
N 8 0.975 | 0.974 | 0.975 | 0.995
N
k. 1 - 2.692 | 2.740 | 2.740
. 2 - 1.126 | 1.128 | 1.128
L7 3 1.150 | 1.121 | 1.124 | 1.124 )
; 4 | 0.831 | 0.902 | 0.902 | 0.901 4
o K3 3
v 5 0.831 | 0.899 | 0.899 | 0.898 .
. 6 0.805 | 0.904 | 0.905 | 0.904 .
r 7 | 0.905 | 0.928 | 0.928 | 0.928 by
) .
) 8 0.942 | 0.946 | 0.946 | 0.946 )
. Table 6.2. The Values of C,(p,k). X
o "
v 3
N A
o We see that if s:.l(p,k) £ 5% (cf. Figures 6.3,6.5,6.6), then C.l(p,k) = 1 D
. R
and C.l(p,k) < 1, and furthermore, Ci(p,k)———>1 as p—oo.
\- The fact that C.l(p,k) < 1 for most values of p and k can be g
"y ».
D) -
™, .
Pa.' (%
41
N

I Tt T e I S S R It e LG D S
Wy, N h S gy e S ot - - * . . e e . N v . .

AT A ALY R AL SN




explained in part as follows. Let

N
E(p,k)u = Zz:a(u,uj(p,k))uj(p.k),
J=1

be the a-orthogonal projection onto §(p'k) and let

N
E, (p.k)u = Za(U.uJ(p,k))uJ(p,k).
=i

Then we have

(6.13a)

A

2 2
(A, (p.k)=2 )/, {uui E, (p,}u g ”“1'51(”"‘)“1”b} 1

, 3 2
AJE (e e IE (k) S J TP, k)

{ lug=E; (p, k) u, | }
l—ki X
lhu; =E, (p, k) u, |
2
lu, -E, (p.k)u, g .
2

i
A, llu,-E(p k)u H E. (p,k)u H2
i"7i ’ i1

cf(p,k)

(]
mNo N
A A

Note that for 1 =1, (6.13a) simplifies to

(Al(p,k)—kl)/kl llul’E(p,k)u i

{6.13b) =41-A 1

2 1
cl(p.k) Hul-E(p.k)ulN

-1

2
}x(AIHE(p,k)ule)

M Nlo

Table 6.3 shows the values of the right side of (6.13b) for k = 0 and 1.
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K
;\\ 0 1

1 - 2.04

2 0.916 | 1.041 R
3 0.968 | 0.968 y
4 0.962 | 0.952

5 0.977 | 0.996

6 0.984 | 0.996

7 0.993 | 1.000

Table 6.3. The Values of the Right Side of (8.13b) (for Al).

We note two features:

+ The values in Table 6.3 are very accurate upper bounds for the correspond-
% ing upper bounds in Table 6.2. This indicates that the inequality in

(6.13b) is a near equality.

- There are two factors on the right side of (6.13b); the first is less than »
N 1 and the second may be greater than 1. Since the values in Table 6.3
: are mostly less than 1 we see that the first factor on the right side of
N

(6.13b) is having a greater influence than the second factor. Thus the
cancellation in the first factor is causing the right side of (6.13b) to be

less than 1 and

Mul—E(p,k)u I

—
mMjo N

A

1nu -E(p,k)u

. n

1

- plays the major role in determining the degree to which it is less than 1.
Although we don't have computed values for the right side of (6.13a),

Table 6.4 shows the values of

2
lu, -E(p, K)u, | 3
oA, — Lol E(p, K)u, 127}
Ylu-E(p ou iE) be
i ’ i'E
43
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(6.132) since Ei(p.k)ui E(p,k)ui.

We again see the two features noted

We believe this expression is very close to the right side of

K
r}\ 0 1

1 - -

2 - 6.52

3 - 1.28

4 | 0.831 | 0.932
5 | 0.831 | 0.906
6 | 0.908 | 0.913
7 | 0.908 | 0.941
8 | 0.948 | 0.948

Table 6. 4.

Since Ci(p,k)

number of degrees of freedom

We see once more the typical

- - ] - - o R m e wm s s m e, e - L T .y - - - -.. -.-
TGN R A AN o,

read off from Figures 6.3, 6.5, and 6.8,

The polynomial degree

S-curve.
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The Values of the Right Side

the accuracy of the eigenvalue approximation can be
changing the scale of the errcr by
squaring — a 10% approximation error corresponding to a 1% eigenvalue error,
1% approximation error corresponding to a .01% eigenvalue error, etc.

Figure 6.7 shows the relative error in Al(p,k)

-
-

of (6.14) (for AB).

as a function of the
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Figure 6.7. Relative Error in Al(p,k). :
From Figure 6.7 we note that the smallest eigenvalue AI is approximated with ::
"

an accuracy of < 3% for N = 2 (corresponding to k =0 and p = 2). From
-,
Figures 6.5 and 6.6 and Table 6.1 we see that AZ and Aa are approximated ;
;
‘»
>
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with this accuracy for N = 9 (corresponding to k = 0 and p = 4). These
results illustrate a feature of eigenvalue approximation: reasonable accuracy

for the low eigenvalue can be achieved relatively cheaply.

Accuracy of the Approximate Eigenfunctions

Now we turn to a discussion of the accuracy of the finite element approx-
imation of the eigenfunctions. As in the discussion of the accuracy of the

eigenvalues we define (cf. (5.10))

Hui—ui(p.k)HE/HUi”

_ E
(6.15) Di(p.k) = ci(p,k) .
From Theorem 5.1 we have
(6. 16) 1£D (pk) £ 1+0(p ).

Table 6.5 presents the values of Di(p,k) for various values of p and k.
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¥

' ;\i 0 1 2 3 :
1 - 1.060 | 1.062 | 1.062 :
X 2 1.004 | 1.015 | 1.014 | 1.014 .
'S 3 1.003 | 1.009 | 1.008 | 1.009 3
\5 A, 4 1.003 | 1.003 | 1.004 | 1.004 E
\ 5 1.002 | 1.001 | 1.001 | 1.001 I
- 6 1.001 | 1.000 | 1.001 | 1.001 N
‘; 7 1.001 | 1.000 | 1.000 | 1.000 :
. 8 1.000 | 1.000 | 1.000 | 1.000 3

. 1 - 1.116 | 1.115 | 1.115
2 | 1.041 | 1.038 | 1.038 | 1.038 3
3 1.049 | 1.047 | 1.047 | 1.047 N
\, 4 | 1.009 | 1.015 | 1.015 | 1.016 )

5 1.006 | 1.001 | 1.002 | 1.002
6 1.001 | 1.001 | 1.002 | 1.002 E
7 1.000 | 1.000 | 1.000 | 1.000 ¢
8 | 1.000 | 1.000 | 1.000 | 1.000 y
1 - 1.163 | 1.166 | 1.186 ]
2 - 1.039 | 1.040 | 1.040 i
3 1.414 | 1.041 | 1.041 | 1.041 3
", 4 | 1.002 | 1.019 | 1.019 | 1.019 ;
5 1.002 | 1.004 | 1.004 | 1.004 N
6 1.001 | 1.004 | 1.004 | 1.004 §
7 | 1.001 | 1.001 | 1.001 | 1.001 3
8 1.000 | 1.000 | 1.000 | 1.000 ‘
-
Table 6.5. The Values of Di(p,k). 3
'
We clearly see that Di(p,k) is very nearly 1 for the entire range of p 1
-j‘ and k. Thus the accuracy of eigenfunction approximation can be read off from ﬁ
‘5 Figures 6.3, 6.5, and 6.8. We also see that Di > 1, Di converges to 1, :i
g but not monotonically, and the convergence appears to be better than J

o(p™43).
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Relation Between the Eigenfunction Error in H-Hb and H-HE
Since n7n(p,k) < O(p_l), (5.11) implies that
-1
- < -
(6.17) ||u.1 E(p.k)uillb < Cp llui E(p,k)uiHE.
Table 6.6 gives the values of
plu.-E(p,k)u.ll, /Iy, |
(6.18) Q, (p. k) = — b 1b
- |
lu, ~E(p, k) u I/l i
k
2
‘k 0 1 3
1 - 0.688 0.691 0.691
2 0.745 0.9089 0.907 0.907
3 0.811 1.135 1.153 1.154
A 4 1 067 1.016 1.108 1.117
1 5 1.055 0.516 0.920 1.047
6 1.030 0.478 0.956 1.142
7 0.886 0.520 0.481 0.625
!
1 - 0.825 0.824 0.824
2 1.413 1.081 1.081 1.081
3 1.165 1.578 1.578 1.578
A 4 1.877 1.514 1.5186 1.516
2 5 1.756 1.292 1.2898 1.299
6 1.356 1.553 1.559 1.559 ‘
7 1.289 1.321 1.338 1.338
1 - 0.835 0.897 0.897
2 - 1.2285 1.225 1.225
3 3.000 1.840 1.839 1.839
N 4 1.754 1.774 1.777 1.777
3 5 2.193 1.565 1.564 1.564
B 1.812 1.730 1.791 1.791
7 2.114 1.693 1.692 1.683
Table 6.6. Values of Qi(p.k).
48
N T A N N Y O N D A N A I T N A N B DA

.
. a W T )

e




R UNAN NS Ve b Bie 2o ptotul SNl 104 G4 SOk G4

We see that the values of Qi(p,k) are nearly independent of p, which is
what we would expect from (6.17). Note that the first factor on the right
side of (6.14) is 1-[Q(p,k)p '1%.

Regarding eigenfunction error, (5.12) implies
-1
- < -
Ilui ui(p,k)llb < Cp ||ui ui(p,k)llE

To illustrate this result we define

pHui—ui(p,k)Hb/HuiHb
Hui-ui(p.k)llE/HuillE

(6.20) éi(p,k) =

similar to those in Table 6.6. We can thus conclude that the errors
ui-ui(p.k) and ui--E(p,k)ui have very similar behavior. This is true
and for rough as well as smooth

X in either of the norms or

11y, e

the entire range of p and k that was considered.

p\A Ay A A3

1 - - -
2 0.690 1.193 -

3 0.722 1.934 | 2.567
4 0.880 1.950 1.709
5 0.864 1.878 2.136
6 0.953 1.382 1.850
7 0.841 1.304 2.158

Table 6.7. Values of Qi(p,O).
Table 6.8 shows the values of

Hu.l-ui(p.k)llE ||ui-u.1(p.lrc)llE

Tu g and 15,1 '
i"E
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Table 6.7 presents values of Qi(p,k) for k = 0. The results are seen to be

eigenfunctions, meshes with distorted as well as undistorted elements, and for
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E where ”ai”b = Hﬁi(p,k)ﬂb =1, for k=0 and 1 and i = 1. We see (as we ’
5’ should expect) that the first of these two values is the slightly smaller than
o the second. .
X
‘Z b lui-uy (p,0) g Ha1—ﬁi(p.0)ﬂg luij-uq (p, 1 E ”al_al(p'l)”E |
< fualle l9ale 1uslle 19le
- 1 - - 0.666 0.800
ZZ 2 0.174 0.176 0.2339 0.352
’: 3 0.148 0.150 0.235 0.239
L 4 0.132 0.133 0.088 0.089
, 5 0.109 0. 108 0.032 0.033
6 0.086 0.086 0.026 0.026
7 0.071 0.072 0.020 0.021 ,
8 0.062 0.062 1 0.017 0.017 .

Table 6.8. Comparison of the Errors in ul(p,k) and

Gl(p,k) in |

E A
Table 6.9 presents the corresponding errors in H-Hb, i.e., .
luy =, (pL KD =, (e k)
T and =
1'b g iy

for k=0 and 1. The table shows that the second of these quantities is

the smaller.
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b uui—ﬁa(ﬁ.O)ub uﬁl-ﬁl(p,O)ub uu1—ﬁ1(p,1)nb uG1—Gi(p.1)ub :
1l 19 0 urlhe 13 1y g
1 - - 0.3175 0.2831
2 0.0601 0.0530 0.1252 0.1175
3 0.0359 0.0345 0.0801 0.0771
4 0.0323 0.0314 0.0029 0.0226
5 0.0210 0.0202 0.003S 0.0034 I
3] 0.0136 0.0131 0.0020 0.0020 ;
7 0.0078 0.0075 0.0u0Ss 0.0004 i
8 0.0068 0.0064 0.0004 0.0004 2
:
Table 6.9. Comparison of the Errors ul(p,k) and X
u; (p,k) in el E

In general, to measure the error between exact and approximate eigen-

functions we can associate the exact and approximate eigenfunctions together -

in various ways. For example, we can associate uy and ui(p,k) or uy and -

ﬁi(p.k). A third possibility is to associate Gi(p,k) with Gi = Bﬁi, where

B is chosen so that Hai-ai(p,k)HE is minimal. This choice is of interest

A AR

since it also minimizes

HBui-ui(p.k)Hb

IIBui-ui(p,k)llE -~

RO A
o O W WY OT LT B Y

Table 6.10 shows the values of

16, -0, (P, )l lu -u, (p.k

)
and b.

PRAARS -'!1’!

(. Il ly

Note that gl < Hul,.

s

-

’
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L4
-
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o nGI-Gl(p.O)nE n51-ﬁi(p.0)nb nG1-61£p,1)nE nﬁl—Glip,l)nb
lullg luyllp luille lullp

1 - - 0.808 0.2912

2 0.176 0.0530 0.354 0.1181

3 0.150 0.0345 0. 240 0.0773

4 0.133 0.0314 0.089 0.0226

5 0.109 0.0202 0.032 0.0034

5] 0.088 0.0131 0.026 0.0020

7 0.071 0.0075 0.021 0.0004

8 0.062 0.0064 0.017 0.0004

~

Table 6.10. Comparison of the Errors ul-ﬁl(p,k)

in [l and |-l
We see that these different associations of exact and approximate eigenfunc-

tions lead to very similar values for the errors.

A Posteriori Estimates

Let (A,u) = (Ai,ui) be a fixed eigenpair of (6.1) and let (A(p),ulp))

= (A (p,k),u, (p,k)) be its approximation by the finite element method. We

suppress both 1 and k in this notation. Denote by z[p] € Hé(Q) the
exact solution of

221 S Ay in @
(6.21) (p]

z'Pl =0 on T,
and then denote by zép] the finite element solution of (6.21) using elements
of degree q 2 p on the same mesh. Obviously zép] = u(p), 1i.e., ulp) |is
the finite element approximation of z[p], and ”le]__z;p]” as

(p] _ (p] _ tp) _ ,_[p]_ :
gq—w. Let ¢ = |z u(p)HE and Cq = “zq u(p)dE.
[t is shown in [17] that
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(6.22) DEIAL ¢ lPh)2(1h001)), ;
so that if we have a reliable a posteriori estimate for e[p], we then have a

. . . [A({p)-Al
reliable a posteriori estimate for - There are a number of ways to
obtain an a posteriori estimate for c[p]. For a survey of relevant
literature we refer to [18]. We now obtain such an estimate. Note that

2 2 1/2

(6.23) elP! = (zlPhiE - pueeniZ

and for q 2 p,

(plN2 _ ,_[p] _ 2_,_[pl__Ipl,2
[c ] = |z u(p)llE z 24 (=

q
We thus easily see that eép] is increasing with q and that
2 2
(6.24) lim [c[p]] = 2P upd = [e[p]]
q E
q-®
Hence
(6.25) e[p] & eép], for q large;
this is the desired a posteriori estimate for c[p]. From (6.22) we have
A=Al _ ((p])2
(6.26) —s [sq ] , for 1« p«q.

To check the quality of the approximation in (6.26) we consider the quantity

(6.27) olP! = (A(p)—x)gx .
T
€
q
-
g In Tables 6.11 and 6.12 the values of Qép] are presented for various values

of p and q and for O0- and 1l-layer meshes for the first eigenvalue. Qip]

is obtained by an extrapolation procedure.
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2
-
‘-l
p
4 5 7
q\ 2 3 6
3 0.167 - - - - -
4 0.322 0.198 - - - -
) 0.480 | 0.406 0. 256 - - -
6 0.6312| 0.603 0.506 1.342 - -
7 0.717 0.717 0.654 1.533 | 0.306 -
8 0.7659] 0.783 0.734 1.662 | 0.491 0.268
0 0.843 0.892 | 0.912 | 0.925 0.939 0.952
Table 6.11. Values of Qép] for a O-layer mesh and for i
Y 1 2 3 4 5 6 7
q
]
2 | 0.553 - - - - - ]
3 0.701 0.442 - - - -
4 0.804 0.814 | 0.778 - - - ;
5 0.815 | 0.873 | 0.881 0.795 - - ;
6 0.816 | 0.877 | 0.889 | 0.855 | 0.388 -
L
7 0.817 | 0.879 | 0.8383 | 0.885 | 0.617 0.379 )
8 0.817 | 0.880 | 0.895 | 0.900 | 0.722 0.552 0.089 ]
L
© 0.818 0.881 0.897 0.910 | 0.920 | 0.926 0.832 )
]
L
Table 6.12. Values of Q;p] for a 1-layer mesh and for 1 = 1.
~
;j From the tables we see that Qip] = 1, for 1 « p, as predicted. 1
v <
;{ Since z[p] is often cheaper to compute than the approximate eigenvalue )
' A{p), we see that (6.26) provides a reasonable estimate for the accuracy of )
,
- h
o A(p); in fact, for q = p+2 we will usually have q
g 4
o !
L (]2 4
IA(p) - Al/A < 2[eqp ] .

N
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